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1. Introduction 

Oral cancer is the leading cause of cancer-related death in 

south-east Asia and India [1]. OSCC (oral squamous cell 

carcinoma) is the most common among different types of 

mouth cancers. Advancement of research in this field comes 

with numerous drugs and therapeutic strategies, and many 

of these work well in the primary/initial stages of treatment. 

Current primary therapies for oral cancer include surgery, 

chemo/radiation therapy, targeted therapy with small 

molecular inhibitors (SMI), and monoclonal antibodies or 

immunotherapy (MAbs) [2, 3]. Despite intense research and 

successes in treating oral cancers, cisplatin is the primary 

chemotherapeutic drug to treat OSCC. 

Conversely, numerous oncogenes and signaling molecules 

supported OSCC survival over the years and found 

lucrative targets [4]. Chemotherapeutic anti-cancer agents 

like cisplatin form DNA adducts, and 5BU (5-Bromouracil) 

gets incorporated with rapidly growing tumor cells, causing 

DNA damage, reducing proliferation, and promoting cell 

death. However, most of these chemo drugs have an off-

target effect on healthy normal cells causing high toxicity 

and side effects [5]. Therapeutic resistance for nontargeted 

chemo-drugs, for radiation treatment, targeted (SMIs) 

chemo-inhibitors/TKIs (erlotinib, gefitinib, and lapatinib), 

and monoclonal antibodies (cetuximab, panitumumab 

against EGFR) and Immune Checkpoint Inhibitors 

(nivolumab against PD1) have been reported. 

These drugs are effective during early treatment, but 

patients develop recurrent cancer as treatment of oral cancer 

proceeds [6]. Later, most of these tumor cells adapt to 

pharmaceutical treatment and become DR. Drug resistance 

leads to most cancer-related deaths [7, 8]. Besides the 

chemotherapeutic drugs, resistance to immune checkpoint 

inhibitors (ICI) has also been reported for OSCC. These DR 

mechanisms vary significantly among different patients, 

tumor stage/grade, cancer cell types, and nature/dose of the 

drug [9]. Hence, DR can be varied from patient to patient 

and is difficult to classify. The cancer cells offer 

intrinsic/inherent or acquired resistance. The intrinsic 

resistance is inbuilt with the patient and present before drug 

treatment; on the other hand, the acquired resistance is 

induced by the cancer cells after therapy.  

Intrinsic/innate resistance to particular drug/s has been 

observed in many oral cancer patients. These patients do not 

respond to drugs because of pre-existing factors. These 

factors include specific genetic mutations, deletions, 

amplifications, alternative splicing, or post-translational 

protein modifications. A minor subpopulation of treatment-
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selected cells behaves like cancer stem cells (CSCs) and 

causes tumor relapse [6, 10]. Upon cisplatin treatment, 

many oral tumor cells showed PI3K-Akt, EGFR-MAPK, 

JAK-Stat3, CD44, and Nanog overexpression [11-15]. The 

high activation of EGFR, PI3K, and Akt pathways activate 

TFs (transcription factors) like AP-1, NFκB, p53, Snail, 

Slug, etc., causing EMT (epithelial-mesenchymal 

transition) of OSCC [16, 17]. Other defensive CSC 

strategies, like increased drug efflux (mediated by ABC 

transporter), and detoxifying drug (via glutathione S-

transferase system), have been reported in OSCC. 

Similarly, the overexpression of CD44, ALDH1A1/3A1, 

and Nanog in a minor population of OSCC cells promotes 

cisplatin-resistant [11, 12, 17]. Similarly, the minor 

subpopulation with more self-renewal programs and 

survival makes it more therapy-resistant [10, 13-15]. 

Intrinsic therapy resistance is a vital problem in OSCC. 

In acquired resistance, the efficacy of an anti-cancer drug 

gradually decreases after the drug treatment. In the acquired 

resistance, the drug target gets modified or mutated over 

time [10, 18, 19]. The DNA repair ability of OSCC cells 

affects the therapeutic efficacy of platinum compounds and 

poly ADP-ribose polymerase inhibitors. It causes acquired 

resistance in OSCC [20]. The shifting of EGFR mutations 

caused therapy resistance to first, second, and third-

generation TKIs (tyrosine kinase inhibitors) in cancer [21-

24], including OSCC. Likewise, the imatinib (TKI) induced 

mutations of BCR-ABL kinase within the target kinase 

domain have been reported that cause acquired resistance in 

cancer [25]. Resistance to immune therapy caused due to 

the acquired defect of tumor-specific antigen expression 

(PD1, PD-L1, or CTLA4) in OSCC [26]. Hence acquired 

resistance is also widely observed in OSCC [27].  

Other mediators can cause innate or acquired resistance in 

OSCC. These include the activation of proto-oncogene/s, 

miRNA, lncRNA, circ-RNA, mutations, drug target 

alterations, tumor microenvironment (TME) changes, and 

mobilization of these molecules through micro-vesicles or 

exosomes after treatment. With all these molecular players 

of diverse characters, the story of the DR in OSCC is 

lengthy and complicated. These scenarios warrant a refined 

understanding of the DR mechanism in OSCC for better 

therapeutics. 

2. Drug resistance mechanism in OSCC 

Oral cancer patients are treated with chemotherapy 

(including nontargeted cisplatin, carboplatin, docetaxel, 

paclitaxel, adriamycin, doxorubicin, epirubicin, pirarubicin, 

methotrexate and 5-FU, i.e., 5-fluorouracil or targeted SMI 

like erlotinib, sunitinib, sorafenib, olaparib, etc.) or 

radiotherapy (2D, 3D-CRT and IMRT) or both types. The 

patients also receive immunotherapy (targeted 

immunotherapy, i.e., cetuximab, bevacizumab, 

Figure 1: Common treatment strategy for oral cancer: Oral cancer is mainly treated by surgery; surgery and radiation; 

surgery, positive loco-regional lymph node removal (LRLNR) and radiation; surgery, LRLNR, radiation and 

chemotherapy; or palliative care with only radiotherapy based on tumor site, type of tumor, stage/ grade and biopsy status 

of nearby lymph nodes. The therapy resistance is mainly seen in the treatment of all three major classes: (A) 

Chemotherapy, (B) Radiation therapy and (C) Immunotherapy. (A) It’s not a remedial modality alone; it’s administered 

before surgery (induction) and/or with irradiation/ post-surgery chemoradiotherapy. The common use of adjuvant 

chemoradiotherapy has been seen. The chemotherapy drugs (cisplatin, 5-FU, methotrexate, hydroxyurea, anthracyclines, 

platinum derivatives, alkaloids, and toxoids) and targeted chemo-drugs against RTKs (erlotinib, gefitinib, sorafenib, 

sunitinib etc.), and drugs that block GF receptors/ enzymes (sirolimus) were used. (B) Radiotherapy (RT) is used only if 

the tumor is inoperable as a palliative choice for terminal cases and combined with chemo/ targeted therapy. The 3D-CRT 

(3-dimensional conformal RT) and intensity-modulated RT (IMRT) are used to protect (e.g., optic nerve, brainstem, spinal 

cord and parotid glands) vital organs. (C) The targeted immunotherapy drugs, including monoclonal antibodies 

(cetuximab, panitumumab, bevacizumab, etc.), ICIs (nivolumab, pembrolizumab, cemiplimab, atezolizumab, avelumab 

etc.) have been used. Many of these strategies work fine during the initial days but lead to DR. 



Mishra  6 
 

Citation: Mishra R (2023). Treatment failure shortcomings, possible causes and upcoming phyto-optimism in oral cancer. 
T Appl Biol Chem J; 4(1):4-27. https://doi.org/10.52679/tabcj.2023.0002 

panitumumab, etc., and immuno-checkpoint inhibition with 

nivolumab, pembrolizumab, cemiplimab, atezolizumab, 

etc.) [8, 28-31] for their treatment as depicted in figure 1. 

However, the OSCC is challenging to treat by using these 

drugs. So, at the end of each treatment, there is only one 

outcome, i.e., drug resistance. Each oral tumor’s DR pattern 

appears different [29, 32]. This can depend on several 

genetic, epigenetic, and other factors [33]. There is a great 

variation of DR on a patient-to-patients basis [9] which is 

vital for treatment success [34]. Here, the oral cancer DR 

mechanisms are summarized under these subheadings: 

alteration of drug target, bioenergy dependency, change of 

drug efflux, DNA damage repair, epigenetic alteration, foul 

tumor microenvironment, and general senescence escape, 

heterogeneity of tumor and initiation of EMT. Many of 

these factors move through the extracellular vesicles and 

make the sensitive oral cancer cells resistant have also been 

discussed (figure 2). 

2.1 Altering drug target 

Alteration of drug targets (ADT) is where the drug target 

molecule gets altered with drug selection pressure. ADT is 

evident in DR or recurrent oral tumor patients. OSCC is 

treated with many targeted therapies, which in many cases 

leads to therapeutic resistance [35-37]. Prolonged exposure 

of OSCC cells to the drugs like afatinib, MK2206, BEZ235, 

olaparib, and cisplatin caused a nearly eight-fold rise in the 

mutational rate [38]. This reduced several advantages of 

targeted therapy over traditional chemotherapies, which are 

often toxic to normal cells. The ADTs occur due to the 

generation of a secondary mutation/s or epigenetic 

modifications [36, 37] affecting the drug target. 

Wild-type (wt) p53 senses cellular DNA damage and 

activates the responses [39]. P53 mutation at the DNA 

binding domain can predict the therapy resistance in OSCC 

[40]. Upon selection pressure, the cancer cell with wt-p53 

acquired p53 mutations [36, 37], which fails the DNA repair 

[36], and offers treatment resistance [35]. Many EGFR 

inhibitors are initially effective and subsequently cause 

drug-induced mutations in OSCC [41-43]. The EGFR 

T790M mutations were described among OSCC patients 

[44], which endorses acquired resistance [22]. Similarly, 

the resistance to ICI therapy in OSCC [45] could be due to 

the loss of antigen presentation, and epigenetic 

modification/s. The lack of memory T-cells, defects of 

interferon pathways, and upregulation of other immune 

checkpoints [46] could be other mechanisms. These drugs 

induced mutations caused in therapy resistance of OSCC. 

Figure 2: Mechanism of treatment failure in OSCC. Treatment failure is the primary concern and raises the 

question of using single-molecule/ single targets on cancer. Here the common treatment failure mechanisms 

(A-J) have been projected (A) Alteration of Drug Target; (B) Bioenergy dependency; (C) Change of drug 

efflux; (D) DNA Damage Repair; (E) Epigenetic alteration; (F) Foul tumor microenvironment (G) General 

senescence escape; (H) Heterogeneity of tumor; (I) Initiation of EMT; and (J) Jigsaw Extracellular 

Vesicles/microsomes as discussed in the text. 
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2.2 BioEnergy dependency 

All living cells, including cancer cells, need energy for their 

survival. ATP, either in the extracellular tumor 

microenvironment, supports metabolism and even 

therapeutic resistance [47]. The inhibitors of GAPDH and 

LDH (like 3-bromopyruvate or oxamate and FX11) reduce 

ATP (intracellular) levels and sensitize them to therapy. 

Cetuximab inhibits glucose uptake and lactate production 

and reduces cellular ATP levels of OSCC [48]. The OSCC 

cells with elevated AMPK activity were less sensitive to 

cetuximab-induced growth inhibition [49]. The increased 

intracellular ATP competes with the inhibitors of RTK 

(receptor TKs)/TK (tyrosine kinases) or enhances drug 

(ABC transporters) efflux, causing therapy resistance. The 

purinergic receptors help import ATP [50] and support the 

carcinogenesis and chemoresistance of cancer [51]. 

Purinergic receptors (P2X/Y, P2R) are involved in the 

therapy resistance of OSCC [11, 14, 15, 52]. This purinergic 

receptor-mediated signaling activates interleukins and TFs 

(c-Jun/NFκB) in OSCC [53, 54]. Extracellular ATP 

activates and increases glucose transporter-1 in cancer cells 

via P2X7 [55], causing therapy resistance in OSCC [11-14]. 

ATP released from stressed cells degrade to AMP/ 

adenosine by CD39/73 and is observed in OSCC [56] linked 

with resistance. Adenosine signaling affects extracellular 

ATP and promotes immunosuppression and therapy 

resistance in OSCC [57, 58]. 

2.3 Change of drug efflux (DE) 

The efflux of anti-cancer drugs plays a vital role in 

chemotherapy resistance. The intrinsic or acquired causes 

can promote this ATP-driven DE [8]. The human genome 

has 48 ABC transmembrane transporter DE genes that 

belong to seven subfamilies (ABCA to G) [59]. The 

expression of ABCB1/C1/G2 was found to be linked with 

the DE of many drugs (anthracyclines, bisantrene, 

camptothecins, epipodophyllotoxin, flavopiridol, 

mitoxantrone, and TKIs-gefitinib/imatinib). These ABCA-

G molecules removed cisplatin, doxorubicin, etoposide, 

paclitaxel, and vinblastine and were elevated in 

chemotherapy-treated OSCC patients [60-62]. The 

overexpression of ABC-B1/C1/G2 was involved with the 

therapy resistance of OSCC [60, 63, 64]. ABCB1/C1/G2 

upregulation was found in cisplatin-resistant OSCC [34, 65, 

66]. Similarly, the patients with more MDR(P-gp), MRP, 

and BCRP were associated with therapy resistance [34]. All 

these drug efflux molecules cause therapy-resistant in 

OSCC [66, 67]. Different signaling pathways like Hh (5-FU 

and cisplatin-resistant OSCC)/ABC transporters [60], Nrf2-

induced expression of ABCG2 in CSCs [68], Notch1 driven 

ABC transporters [69], MAPK (JNK) propelled MDR (p 

gp) [70] and p38 MAPK induced Hsp27/ABCG2/MDR-1 

causing therapy resistance in OSCC [63]. All these 

signaling pathways fuel many gene upregulations causing 

therapy failure, DR, and tumor relapse in OSCC.  

2.4 DNA damage repair 

DNA damage is induced by many chemotherapy drugs that 

kill cancer cells. The higher DNA damage response (DDR) 

to the anti-cancer drugs can reduce the drug efficacy (by 

DNA lesion repairs), leading to resistant OSCC [71, 72]. 

The DDR also affects DNA repair, cell cycle, cell death 

control, and senescence. The DNA damage induced by 

chemotherapy and ionizing radiation activates/ stabilizes 

the p53 pathway/protein. Different protein kinase sensors 

like ATM/ATR and other (effector) kinases, such as Chk1/2 

and Wee1, participate in therapy resistance in OSCC [73]. 

Mutation/inactivation of the p53 offers therapy resistance in 

OSCC [74]. The increased expression/activity of nucleotide 

excision repair (NER) genes (ERCC1/2, XPA/C/D), base 

excision repair (BER) genes (like APEX1, XRCC1), the 

(DSB) double-strand breaks repair genes (MRE11A, 

RAD50/51, XRCC2), and (MMR) mismatch repair genes 

(MLH1, MSH2/3) were associated with OSCC resistance 

[20, 75-77]. The proteins that guard DNA replications/ 

repair (BRCA1/2, LIG1, DNA2, POLD1, MCM2, and 

RAD54B) offer DNA stability (ATR/CHK1), homologous 

recombination (Rad51, CDK1/Chk1), and DNA 

safeguarding (PARP), causing therapy resistance OSCC 

[38, 78-80].  

2.5 Epigenetic alterations 

Epigenetic alterations play a role in eukaryotic gene 

regulation and therapy resistance in OSCC. Epigenetic 

changes like the remodeling of chromatin, histone 

modifications, DNA methylations, and non-coding RNA 

alterations contribute to the regulation of CSC features, 

drug efflux, DNA repair, apoptosis failure, and treatment 

resistance in OSCC [81]. Induced DNA methylation has 

been observed in therapy-resistant OSCC, HNSCC 

specimens, and cells [82]. The radiation (OSCC) resistant 

rSCC-61 cells showed increased DNA methylation over the 

radiation-sensitive counterpart [83]. Conversely, ten-eleven 

translocation 1 (TET1) regulates o6-methylguanine-DNA 

methyltransferase (MGMT) in chemotherapy resistance 

OSCC [84]. DNA methylation of DPD (dihydro pyrimidine 

dehydrogenase) has been reported in the 5-FU resistance of 

OSCC [85]. ALDH1 (Aldehyde dehydrogenase-1) and PD-

L1 promote therapy resistance in OSCC, and the treatment 

of DNA hypomethylating agents reverses this condition 

[86]. 

Recently, histone acetylation [87], epigenetic alterations 

[82], chromatin remodeling [82], and the non-coding RNAs 

(lncRNAs) participate in epigenetic alterations and 

resistance to therapy in OSCC [82]. Targeting epigenetic 

pathways reduced ZSCAN4 (Zinc finger and SCAN 

domain containing 4) and reduced stemness/ therapy 

resistance [88]. Several microRNAs (miRNAs) play a role 

in the DR of OSCC [89, 90]. Many miRNAs were identified 

in developing cisplatin resistance in OSCC [65]. The miR-

30a promotes 5-FU-resistant [91], miR-29a-3p enhances 

radioresistance [92], miR-224-5p promotes docetaxel 
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resistance [93], and miR-155/ miR-619-5p/ miR-30a 

promotes cisplatin resistance [94-96], and miR-371/-372/-

373/-1246 enhances the therapy resistance [97-99] of 

OSCC. The lncRNAs like LHFPL3-AS1 and lncRNA 

PVT1 were involved in oral cancer development and 

cisplatin resistance [89, 100, 101]. Further, lncp23154 

[101], lncRNA (HOXA11-AS), and lncRNA ANRIL also 

regulate the cisplatin resistance of OSCC [102, 103]. All 

this evidence suggests that both miRNA and lncRNA 

contribute to the therapy resistance of oral cancer.  

2.6 Foul tumor microenvironment 

Tumors contain different types of cells and extracellular 

(ECM) matrix. The TME includes physical, chemical (the 

acidic/ hypoxic environment), and biological environment 

(ECM components, fibroblast, blood cells/ vessels, immune 

and inflammatory cells, nutrients/ GFs, and signaling 

molecules) to resist anti-cancer treatment. The acidic (pH 

6.5-7.1) extracellular TME contributes (‘ion trapping’ of 

weak base anti-cancer drugs at extracellular TME), causing 

the therapy resistance. Therapeutic approaches to reducing 

acidic TME with PPIs (proton pump inhibitors) overcome 

treatment resistance [104, 105], including OSCC [106, 

107]. The inhibition of V-ATPase was effective against 

multidrug resistance in OSCC [108-110), esophageal 

carcinoma [111], and oral epidermoid carcinoma [112, 

113]. 

A hypoxic TME triggers hypoxia-inducible factors (HIFs) 

that promote chemoradiation resistance in OSCC [114]. 

Post-treatment changes in TME contribute to the success of 

chemotherapy in OSCC, and TAM (tumor-associated 

macrophase)-targeted therapy [115-117]. Targeting toll-

like receptor-3 in OSCC decreased TAM and sensitized 

cisplatin resistance, causing tumor regression [118, 119]. 

Over secretion of CSF1 (colony-stimulating factor-1) by 

macrophages promotes aggressiveness [120-123], while 

blocking CSF1 overcomes OSCC therapy resistance [124]. 

Many other growth factors induce EGFR-TKIs resistance in 

OSCC [125-128].  

TME heterogeneity also contributes to therapy resistance. 

The variations of TME vasculature inside tumors change 

the hypoxia level. This leads to fluctuations in O2 levels 

causing oxidative stress-mediated DNA damage, genetic 

instability, clonal subpopulations, and back therapy 

resistance. TAMs of the TME release miRNA-containing 

exosomes, which add to OSCC DR [129]. The other TME 

molecules include H+-ion pumps, anti-apoptotic, DNA 

damage repair, immunomodulatory, and EMT molecules 

that contribute DR to OSCC [96, 99, 129, 130]. Thus, the 

TME plays an influential role in the therapeutic resistance 

of OSCC.  

2.7 General senescence escape  

Senescence is an irreversible process of life. The cells 

gradually lose active cell division/ repair over time. 

Senescence cells activate tumor-suppressor p53 and 

p16INK4a molecules and pathways [131]. Many OSCC 

drugs trigger DNA damage/ breakage, oncogenic signaling, 

and telomere shortening [132]; hence aging becomes faster 

in cancer patients. Escape from therapy-induced senescence 

was known for tumor recurrence, CSCs, and therapy 

resistance [133]. The inhibitors of telomerase enzyme had 

sensitized the OSCCs with short telomeres to radiotherapy 

[134]. Resistance to radiotherapy was higher in the OSCC 

cells with a higher anaphase bridge index [134]. Sustained 

inhibition of PARP-1 affected therapy resistance in OSCC 

cells [133, 135]. p62-overexpressed cells showed increased 

senescence and autophagy in HNSCC [136]. The senescent 

cells observed with augmented Cdc2/Cdk1 activity promote 

survivin expression. Survivin inhibits apoptosis following 

chemotherapy and causes therapy resistance in OSCC [137-

139]. Thus, the senescence escape contributes to therapy 

resistance in OSCC. 

2.8 Heterogeneity of tumor 

The oral tumor comprises a heterogeneous population of 

cells [140]. Types of heterogeneity include genetic, 

epigenetic, cell type [cancer cells, stromal cells, immune 

cells, etc.), metabolic (distribution of oxygen, nutrient, 

etc.), and temporal heterogeneity reported in dynamic 

tumor progression [141]. Oral tumor heterogeneity is a 

threat to treatment success [142]. After initial treatment, the 

clonal variants show different sensitivity levels to a 

particular targeted therapy. The new subpopulations evolve 

similarly to Darwinian selection with additional drug 

selection pressure. The drug-resistant tumor cells, with 

more heterogeneity, behave like CSCs [143]. Recently, 

multiple CD44 variants have added to heterogeneity, 

causing DR in OSCC [11, 144]. The heterogeneous tumor 

cells and surrounding TAF/TAM exchange exosomes, 

transfer miRNAs/circRNA/lncRNA, and induce DR [145, 

146]. Heterogeneity increasing varying hypoxia and 

nutrition [147] have been associated with DR in OSCC. 

Finally, the OSCC heterogeneity support therapy failure. 

2.9 Induction of EMT  

EMT is a process when an epithelial cell progressively 

acquires a mesenchymal cell feature. These transformed 

cells acquire invasive, metastatic properties and are 

common to OSCC. The EMT and CSC share overlapping 

features. The DR oral cancer cells behave like oral CSC 

(OCSC) by activating the EMT program [11, 12]. Higher 

EGFR (epidermal growth factor receptor) signaling can 

back EMT, and therapy resistance in OSCC [148, 149]. 

Many EMT-targeting drugs contribute to therapeutic 

efficacy [150]. Further, the fibroblast growth factor-8 (i.e., 

FGF8), lncRNA MALAT1, miRs (miR-1252-5p/miR-

3148, and miR-429) regulate EMT and DR in OSCC 

patients [151-154]. The therapy resistance and EMT-linked 

molecules (TGF-β, Wnt, and Snail/ Slug) are upregulated in 

resistant OSCC cells [62, 155-158]. Various EMT-linked 

TFs [159], like β-catenin, Snail, Slug, Twist, ZEB, and SRY 

box 4 [SOX4) [16, 65, 155, 160-164] persuade DR to 
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OSCC. The three Snail family members are Snail1/2/3 (or 

Snail, Slug, and Smuc) [155, 165], Twist [166-168], 

ZEB1/2 [169-171], p53 homolog p63 (ΔNp63) [172, 173] 

are involved in EMT, and DR in OSCC. The embryonic 

stem cells TFs Oct4, Sox2, and Nanog promote EMT and 

DR in OSCC [12, 174-178]. The miRNAs participate in 

EMT, and cancer DR [179-181]. miR-30a, miR-224-5p, 

miR-155, miRNA-619-5p, miR-371/372/372, miR-31-5p 

participate in different EMT and DR in OSCC [91, 93-97, 

182]. Similarly, the miR-149-5p, miR-214-3p, and miR-

1246 mediate chemoresistance [98, 102, 183, 184], whereas 

the miR-340-5p (of hypoxic tumor cell) offers radio-

resistance [185], and miR-30a confers cisplatin-resistance 

in OSCC [96, 99]. Higher basal intracellular ATP [186, 

187] and lactate dehydrogenase-A (LDH-A) [47, 188-190] 

promote EMT and offer DR. Hence understanding 

EMT/CSC can boost future anti-DR OSCC therapeutics. 

2.10 Jigsaw extracellular vesicles/ microsomes 

The extracellular (EVs) vesicles carry bio-signals (protein, 

nucleic acid, and lipids) that are utilized for cell-to-cell 

communication [191]. These lipid-bilayer-enclosed EVs 

are released naturally, contain biomolecular cargo, 

participate in intercellular communications, and endorse 

DR [192]. EVs can be exosomes (30–100 nm), 

microvesicles (100–1,000 nm), and oncosomes (1–10 μm) 

[129]. Recently, the DR mechanisms of exosomes and 

microvesicles were reviewed in OSCC [129]. These EVs 

carry miRNAs that promote therapy resistance [193]. The 

chemo-sensitive OSCC cells develop DR once they contact 

the exosomes released from DR cells [194]. EVs carry 

miRNAs (miR-338-3p-LIN28B, miR-196a, and miR-30a, 

like miR-21, miR-21-5p) causing cisplatin-resistance [13, 

96, 195, 196], radio-resistance (miR-340-5p) [185] in 

OSCC. Further, the EVs released by CSC activate signal 

transduction (β-catenin, PI3K, Stat3, mTOR, TGF, and 

CAF) pathways of OSCC [146].  

Exosomes released from DR tumor cells transform the 

sensitive tumor cells into DR [197]. Cisplatin levels can 

recruit copper efflux (ATP7A/B via ILV) transporters at the 

cell membrane [198], which offers DR in OSCC [198, 199]. 

The V-ATPases, expressed at a higher level in OSCC, 

change in/extracellular pH and participate in DR [108, 110, 

200], and their inhibitors sensitize the DR OSCC cells 

[201]. Hence, vesicular acidification is a survival strategy 

for OSCC cells [201]. The extracellular pH of oral tumors 

is lower than in normal tissue [110] and supports DR in oral 

cancer [202]. Exosomes favor anti-apoptosis and support 

DR in OSCC [13, 15]. The release of caspase-3 [203, 204], 

the exosomes derived CAF [196], CAF-CM [196], and 

various miRNAs [13, 96] from EV confer chemoresistance 

in OSCC. 

Tumor-derived exosomes interfere with the DNA repair 

pathways, causing DR. Many cancer drugs, including 

cisplatin, can form DSBs (DNA double-stranded breaks) 

[205, 206]. These DNA lesions get repaired via NER 

(nucleotide excision repair) pathway [206] or BER pathway 

(base excision repair) in OSCC [207, 208] released by the 

exosomes [209]. The exosomes carrying DNA repair 

enzymes promote chemoresistance [209] and radio-

resistance in OSCC [210]. The immunomodulatory effects 

of EV (from monocytes/macrophages) advanced DR in 

OSCC [211, 212]. DNA synthesis interfering drug 

(cisplatin and doxorubicin) prevents the dividing of 

immune cells and weakens the patient’s anti-tumor 

immunity. These exosomes carry miRNAs and regulate 

innate, adaptive immune responses in OSCC [13, 211, 212]. 

Immunomodulation by exosomes is critical for DR in 

OSCC [114, 213-215]. Exosomes confer DR in OSCC 

[216] and offer future solutions. 

3. Strategies for fighting against therapy resistance 

OSCC 

Therapeutic strategies to treat DR oral tumors need to be 

amended. Continuous failure in tackling DR OSCC 

suggests that the ongoing system to deal with resistant or 

recurrent tumors is erroneous. Using a single chemo-drug 

or targeting one pathway is not sufficient. Inventions of 

novel drugs take lots of time and energy. Identifying its 

application in mouth cancer clinical trials is more tedious. 

And finally, when the drug is implemented, it kills only the 

sensitive oral cancer cells. But the resistant minor 

population of malignant cells survives and proliferates to 

form a recurrent tumor [11, 12, 15]. Most chemo 

drugs/radiation therapies are toxic to healthy cells or 

destabilize the genome. The tumor cells develop efficient 

DNA repair mechanisms to avoid cell death. Hence 

searching and fighting against therapy resistance looks like 

a never-ending game.  

The heterogeneity and complexity of OSCC, are 

extraordinarily high. Identifying each molecule/player and 

finding a strategy to combat DR appears extremely difficult. 

The lessons learned from these steps suggest that 

combinational therapies with multiple low-concentration 

drugs are wise choices. On the other hand, plant-based 

natural compounds can also open other options and provide 

a permanent solution. The ancient system of Indian 

medicine, or “OUSADHEYA”, is based mainly on these 

plants or “VANASPATI”. These were written in Ayurvedic 

texts, “Atharva Veda”, and different Samhitas (like “Charak 

Samhita”, “Sushruta Samhita”, and “Vagbhata Samhita” 

[217, 218], could be tried to win over DR OSCC. 

4. Natural compounds against drug-resistance OSCC 

The plant-based natural compounds have been used for 

curing diseases for ages. Though single compound/s are 

widely used in research, crude extracts are more balanced. 

The synergistic effects of different compounds present in 

several plant extracts can regulate other enzymes, 

transporters, and signaling pathways. It can overcome DR, 

enhance pharmacological potency through drug-drug 

interaction, and improve bioavailability [219]. These whole 
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extracts of root, stem, and leaf are stable, and plants co-

evolve with humans. Using the extracts/ formulations of 

different plants and animals will be wise to tackle DR 

OSCC. Here some critical observations of the various crude 

extract have been summarized in table 1. More research is 

needed to wisely use these for treating DR OSCC. 

Besides the crude extracts, some natural/ natural-derived 

compounds have less toxic side effects than many cancer 

chemotherapy drugs. Plants produce secondary metabolites 

that have been well-recognized for their anti-cancer 

properties.  These naturally occurring compounds are 

manufactured in nature’s laboratory and are mostly non-

Table 1: Plant extracts and their successful application in drug-resistant oral cancer. 

Sl No Plant extract Effect on oral cancer and drug-resistant oral cancer References 

1 Azadirachta indica A. 

Juss extract 

The extract contains limonoids nimbolide, azadirachtin, and neem 

leaf glycoprotein. It has anti-tumor and DR properties against 

OSCC 

[220, 221]  

2 Areca nut extract Though chewing areca nut (AN) triggers OSCC, AN extract (ANE) 

decreases cisplatin toxicity by inducing autophagy  

[222] 

3 Bitter melon (BM) 

extract 

It inhibits the metabolism of lipids and glucose. Induces ER/ 

oxidative stress causing apoptosis in OSCC  

[223] 

4 BMEVs Extracellular vesicles derived from BM (BMEVs) decrease the 

5FU resistance of OSCC  

[224] 

5 Centella asiatica extract 

(with Asiatic acid) 

Found to have anti-cancer activity in cisplatin-resistant HNSCC  [225] 

6 Celastrol (a pentacyclic 

triterpenoid) treatment 

Celastrol (Chinese herbal medicine Trypterygium wilfordii) was 

found helpful in treating MDR oral cancers  

[226] 

7 Danshen extract Danshen extract identified be a potential anti-cancer agent in DR 

oral cancer treatment  

[227] 

8 Eruca vesicaria extract Its intake affects ABC transporters in liver cells. This could be 

beneficial in DR OSCC.  

[228] 

9 Glycyrrhiza glabra 

(Liquorice extract) 

 

It contains secondary metabolites. It is used in foods, cosmetics, 

and medicines (anti-ulcerative, anti-carcinogenic, anti-microbial, 

and anti-DR in OSCC) 

[229] 

10 Juniperus indica extract  The extract synergizes with cisplatin to halt cell cycle progression 

and caspase activation  

[230] 

11 Mangosteen pericarp 

extracts 

Shown cytotoxic effects on oral cancer  [231] 

12 Ocimum sanctum extract Reported causing a cytotoxic effect in oral and HNSCC. Inhibited 

MMP2/9 activity and can be used against DR OSCC 

[232] 

13 Polygonum cuspidatum 

extract 

Induces apoptosis and autophagy in cisplatin-resistant human 

OSCC  

[233] 

14 Plumbago zeylanica 

L.  (Plumbagin) extract 

Effective against DR tongue SCC  [234] 

15 Red Ginseng extract (a 

Korean herbal medicine) 

Inhibits Pgp-mediated drug efflux and sensitizes chemotherapy 

resistance OSCC cells 

[235] 

16 Scutellariae radix (a 

Chinese herbal 

medicine) 

Acts against chemoresistant human tongue SCC and promotes 

apoptosis  

[236] 

17 Solanum nigrum ripen 

fruit extract 

The unripe fruit is a chemo-sensitizing agent against Adriamycin-

resistant cancers and downregulates JAK1, p/Stat3, and Mdr1. It 

shows anti-tumor properties.  

[237] 

18 Vernonia cinerea Less 

(VC) extract 

It inhibits multidrug resistance transporter in epithelial cancer 

cells. 

[238] 

19 Vaccinium 

corymbosum L. extract 

Reserved the OSCC growth acted against PI3K/Akt, TGF-β, and 

NF-κB pathways.  

[239] 

20 V. macrocarpon 

(cranberry) extract 

Upregulated the apoptosis, p53, and c-myc level in OSCC [240] 

21 Withania somnifera 

extract 

It has anti-inflammatory properties (Ayurveda practice) and is also 

effective in treating DR cancers. Known for immune-modulatory 

and MDR and can reverse chemotherapy-induced effects. 

[241, 242] 
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toxic to normal cells. These molecules are hard to design in 

a chemical laboratory, maintaining their specificity only for 

cancer cells. Natural compounds are highly demanded 

(WHO) in cancer treatment. These phytochemicals 

generally inhibit/disrupt methyltransferases, histone 

deacetylases, antioxidants, DNA damage, and mitosis 

promoters. Recently, these plant compounds with anti-DR 

oral cancer properties have been identified. These largely 

comprise brassinosteroids, polyphenols, and taxols. 

Polyphenolic compounds comprise curcumin, flavonoids, 

gallocatechin, resveratrol, and tannins. The different 

polyphenolic compound inhibits stemness [243] and drug 

transporter (ABCG2) in OSCC [244]. Many of them were 

used against OSCC to eliminate MDR cells [245], cisplatin-

resistant [246], and oral CSC populations [247, 248]. The 

modifications of this nanotechnology cisplatin-resistant 

OSCC [249, 250]. Some other was useful against cetuximab 

resistance in HNSCC [251].  

Similarly, the flavonoids have also shown DR properties 

and were more effective against OCSCs than normal cells 

[61]. Some flavonoids also inhibited cell growth and 

invasion/migration [252] and suppressed the formation of 

the DR sphere [63], down-regulated stemness signature/ 

self-renewal, and chemoresistance [253] in OSCC/HNSCC. 

The flavonoids sensitized HNSCC cells to cisplatin [254] 

and promoted anti-tongue tumor activity [255, 256].  

In contrast, Brassinosteroids are steroid plant hormones and 

have anti-cancer properties in hormone-sensitive (breast 

and prostate) cancers [257, 258]. Recently the role of the 

female hormone on HNSCC [259], expression of ER-alpha 

in OSCC [260-262], and androgen/progesterone receptors 

with poor prognosis of OSCC [263] have been reported. 

Hence, Brassinosteroids could be effective against DR 

OSCC but needs investigation. Here some essential phyto-

compounds and their effect on DR OSCC have been 

summarized in table 2.

Table 2: List of selected phytochemicals and their success story in drug-resistant oral cancer 

Sl No Phytochemical/s Effect on Oral Cancer References 

1  Apigenin  
Reduce CSC marker expression in HNSCC cells under hypoxia. 

Cetuximab-resistant HNSCC cells (with EMT) responded to apigenin 

treatment 

 [264, 265] 

2 Brassinosteroids 
The role of the female hormone ER-alpha androgen and progesterone 

receptors on DR OSCC was reported to open possibilities for many 

Brassinosteroids compounds. 

[257-259, 260-

263] 

3 
Curcumin  Curcumin inhibited OSCC tumorigenesis, including DR. Curcumin 

nanoparticles triggered apoptosis in CR-OSCC.  

[250, 266] 

4 

 

Doxorubicin 

 

Treated as chemotherapy, electrical impulse chemotherapy (EIC) 

against and found effective in chemotherapy resistance OSCC. Nano 

micelles carrying Doxorubicin eliminate multidrug resistance (MDR) 

cells in OSCC. 

[255, 267-269]  

5 
Epigallocatechin 

gallate (EGCG) 

EGCG inhibits drug transporter ABCG2 in OSCC. EGCG also 

sensitized MDR OSCC cells and cisplatin-resistant OSCC cells and 

eliminated OCSC. 

[244-247]  

6 
Genistein A combination of genistein (protein tyrosine kinase inhibitor), along 

with other anti-cancer agents, had augmented cytotoxic effects in CSC/ 

drug-resistant OSCC cells  

[270] 

7 Honokiol 
Honokiol was found to overcome cetuximab resistance and 

chemosensitizing effect in OSCC. 

[251, 271] 

8 
Isoliquiritigenin  Isoliquiritigenin was more potent against OCSCs than normal cells.  [61] 

9 
Isothiocyanate 

(mustard oil) 

Isothiocyanate inhibited cellular proliferation and induced apoptotic 

pathways in human cisplatin-resistant oral cancer cells. 

[272] 

10 
Kaempferol Kaempferol sensitized HNSCC cells to cisplatin drugs [254] 

11 
Magnolol Magnolol inhibits the stemness property of OSCC  [243] 

12 
Nimbolide Nimbolide was beneficial in eliminating DR OSCC cells. It irradicated 

cisplatin-resistant human OSCC when treated with Bcl-xL/Akt 

antagonists. 

[14, 15] 

13 
Pterostilbene The pterostilbene inhibited MDR1 expression in OSCC and can be used 

against DR cancer.  

[248] 

14 
Podophyllotoxin Eradicate therapy-resistant HNSCC cells  [273] 

15 
Quercetin Quercetin inhibited cell growth, invasion/migration, colony-formation, 

and sphere-forming potential in DR OSCC. The combined effect of 

quercetin and cisplatin promotes apoptosis in OSCC. 

[63, 252, 274] 
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16 
Resveratrol  The resveratrol acts against cisplatin-resistant and Cetuximab-resistant 

OSCC cells. It reduced the invasiveness of cisplatin-resistant OSCC. 

[249, 275, 

276] 

17 
Silibinin (milk 

thistle seeds) 

Silibinin down-regulated the chemoresistant, stemness, and self-renewal 

in HNSCC.  

[253] 

18 
Sulforaphane (SF) SF phytochemicals from broccoli possessed anti-stemness/DR OSCC 

properties targeting SOX2/OCT4. 

[12, 277]  

19 Ursolic acid 
Ursolic acid decreases Akt/BAD signaling and promotes cell death in 

cisplatin-resistant oral cancer cells 

[278] 

20 
Vicenin-2  Vicenin-2 (a bioactive compound in O. sanctum) application improved 

antioxidant levels, lipid peroxidation, and pro-inflammatory cytokines 

and halted DMBA-induced hamster oral carcinogenesis 

[279] 

Table 3: Commonly affected pathways after treatment with plant-based phytochemicals in drug-resistant oral 

cancer cells 

Effects of Plant 

Extracts 

Cellular pathways/ molecules targeted in drug-resistant oral cancer cells 

 

References 

Antioxidant 

effects 

The plant products have a scavenging effect on free radicals generated by ROS/ RNS. 

Many enzymes (nitric oxide synthases, xanthine oxidase, peroxidase) involved in the 

production of ROS/ RNS are inhibited by plant products. Plant phytochemical/ 

extract with metals promotes the metal-mediated reduction of peroxides in cancer/ 

DR cancer. 

[280-283] 

 

Effects 

on apoptosis 

Plant-based molecules induced cell death in DR cancer cells. The ROS level, post-

translational modification/s, and impaired glycolysis promoted apoptosis via the 

activation of p53/Bcl-2/Bax/caspase-3.  

[13-15, 277] 

 

Inhibition 

of proliferation 

The oral cancer DR forms a DNA adduct and thus blocks DNA replication causing 

cell cycle arrest. Cisplatin-resistant cells overcome this. Increased nucleotide 

excision repair (NER) such as ERCC1, epigenetic changes such as DNA methylation, 

and cancer stemness were reported in CR-OSCC. Recently, several plant compounds 

promoted cell cycle arrest in DR OSCC cells. 

[12, 256, 

284-287] 

Retards the 

invasion and 

metastatic  

Plant compounds (PC) suppressed the invasion/metastasis process. Deregulating 

several EMT-associated molecules (like β-catenin, E-cadherin, fibronectin, and 

vimentin), along with CSC genes, the PC decreases the metastatic potential. PC 

reversed EMT through signaling pathways (Akt/GSK3β/Snail and MAPK-ERK) and 

reduced the levels/ activity of MMP-9/-2 in DR OSCC. 

[16, 17, 288]  

 

Epigenetic 

effects 

Phytochemicals can affect chromatin remodeling, DNA methylation, histone 

modifications, and miRNA regulation. Phytochemicals/ PCs also regulate HDACs, 

HATs (histone acetyltransferases), and DNMT1 (DNA methyltransferase-1) in DR 

OSCC cancer cells. 

[17, 289, 

290] 

Eradicating 

CSCs  

Drug resistance and CSCs have overlapping functions. Many CSC genes are 

expressed in DR cells, such as Oct4, Nanog, Sox2, and CD44. Plant-based 

phytochemicals reduce stemness, as reported in DR OSCC/ OCSC. 

[11-14] 

5. Effects of plant-based products on drug-resistant 

OSCC cells 

Plant-based products/formulations for treating cancer 

patients have been used for a long. The anti-cancer effects 

of many plant-based extracts/molecules were discussed in 

the previous sections (tables 1 and 2) on DR OSCC cells. 

All these products act as an antioxidant, triggers apoptosis, 

inhibits proliferation, retards invasion/ metastatic, affects 

epigenetics, or destroy CSCs, and can eradicate DR OSCC 

cells. These agents affect several pathway/s and benefit DR 

OSCC, as summarized in table   3. 

6. Management of drug-resistance OSCC patients 

The DR OSCC showed high heterogeneity, and various 

non-/genomic changes make these cells challenging to treat. 

Hence it is high time to identify these regulators of DR of 

OSCC. Recent advancements in high throughput cancer 

genomics, proteomics, and metabolomics have identified 

many of these regulators at the individual patient level. 

Since the causes of DR causes vary from patient to patient, 

personalized treatment strategies can benefit individual 

patients [291]. A continuous follow-up of the resistance 

tumor and patients’ health is important. The tumors, not the 

patients [except metastatic cases), should be treated locally. 

A cocktail of low-dose chemotherapeutic/targeted drugs 

can target multiple proteins, enzymes, receptors, RNAs 

(miRNA, lncRNA, or circRNA), and pathways that 

eliminate DR cells. These low-dose and/or fluctuating drug 

concentration combinations could benefit OSCC patients. 

The highest drug dose was tolerated (adaption and 
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mutations) by cancer cells developing DR. Novel treatment 

strategies of high drug dose (DD) followed by low-DD/ no-

DD followed by moderate-DD can bring delayed DR [292]. 

One of the critical strategies for overcoming DR could be 

to block the energy supply of OSCC cells. All living cells, 

including tumor cells, need the energy to survive. To 

support the actively dividing cell, the energy demand of a 

tumor cell is maximum [293]. Healthy cells are more 

flexible in selecting their energy source but not the DR-

OSCC. Hence the deprivation of glucose with glucose 

transport/ glycolysis enzyme inhibitor/s and cocktail drug 

may be effective. In/extra-tumoral ATP is a crucial TME 

molecule that impacts OSCC cells for DR [293]. Specific 

inhibition of ATP synthesis and degradation of extracellular 

ATP can boost DR tumor therapy. Other strategies among 

the ten DR-OSCC plans proposed earlier could also be 

promising. 

Finally, there should be more focus on plant-based anti-

cancer formulations. Often the whole plant extract or a part 

of the plant extract (table 1) works better. Thus, either 

individual (single) plant extract or a combination of 

different plant-based formulations can be tried on DR 

OSCC cells/ patients. Furthermore, individual 

phytochemicals can act and sensitize the DR oral tumor 

cells [11, 12, 14, 15, 294, 295]. A cocktail of different 

phytochemicals (table. 2) can be formulated and tried with 

routine treatment procedures. The efficacy of all these 

plant-based treatments can be monitored based on the cell 

biomarkers explained in Table 3 and based on the result/s, 

treatment amendment can be adopted. All these approaches 

can act on multiple pathways (figure 3) and have a higher 

chance of eliminating DR OSCC. 

7. Conclusion 

In conclusion, the recent picture of therapy resistance to 

OSCC seems grim. These highly evolved OSCC tumor cells 

get unlimited support from their TME and show high levels 

of heterogeneity, support each other, and desert almost 

every treatment plan. They are adaptive and flexible in 

changing their drug target, bioenergy, drug efflux, DNA 

repair, epigenetics, TME, senescence, heterogeneity, EMT, 

and cell-to-cell communication. These parameters could be 

looked at carefully in designing personalized therapy for 

OSCC. Hence no generalized synthesized drug treatment 

can be very effective in the long run. Instead, the plant-

based formulations seem to be more promising and show 

hope. These drugs/ phytochemicals should be improvised 

with recent technology [296] to improve their efficacy. 

Lastly, understanding the tumor/ patient-specific need to 

overcome drug resistance is key to success. 

Declarations 

Figure 3. Management of drug-resistant OSCC patients. Treatment of DR patients can be improvised. The 

personalized drug can be designed based on the high throughput cancer genomics, proteomics, and metabolomics 

study at the individual patient level. These targeted drugs aim at numerous proteins, enzymes, receptors, and RNAs 

of the DR pathways. The plant-based anti-cancer formulations combining different plant extracts, a patient-specific 

formulation/ cocktail of multiple phytochemicals, polyphenol/s, and antioxidant/s, can be used along with a cocktail 

of low doses of targeted drugs to kill DR OSCC. 
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