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Abbreviations 

AAE Adversarial autoencoder LSTM Long-short-term memory 

AI Artificial Intelligence MDCK Madin-Derby canin kidney 

ANN Artificial Neural Network PAMPA Parallel artificial membrane permeability assay 

CADD Computer-Aided Drug Discovery PCA Principle component unit 

CASP Computer-assisted Synthesis 

Planning 

QSAR Quantitative structure active relationship 

CNN Convolutional Neural Network R&D Research and Development 

DBN Deep Belief Neural Network RBM Restricted Boltzmann Machine 

DD Drug Discovery RNN Recurrent Neural networks 

DNN Deep Neural Networks SMILES Simplified molecular-input line-entry 

specification 

GAN Generative adversarial network SVM Support vector machine 

GCN Graph convolution network TPU Tensor processing unit 

GPU Graphics Processing Unit VAE Variational autoencoder 

GraphMem Graph Memory network XAI Explainable Artificial intelligence 

LBVS Ligand-based virtual screening   
 

1. Introduction 

Successfully introduce a drug to the mass is like finding a 

needle in the haystack, something very different from 

precise engineering. The process of developing a new drug 

is not that straightforward as it seems to the normal 

consumer. It has its turns and twists; even a small casualty 

can be fatal to a large group of people. Hence, drug 

discovery is a very cautious process [1]. With each passing 
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day, the perimeter of chemical library data, enzyme and 

proteomic data, genomic sequencing data, the overall 

biomedical data is increasing sharply. In such a vast ocean 

of data, finding one accurate molecule goes hand to hand 

with many known and unknown opportunities. Hence, the 

process is definitely non-linear with multiple arbitrary 

effects and results and very fragile to errors. The 

contribution of such vast amounts of factors makes the 

discovery of a new drug very tough and expensive in the 

human workspace; this inefficiency leads us to the 

accumulation of an external factor called Artificial 

Intelligence [2]. 

The twenty-first century has noticed the dawn of a new era 

of human revolution: the application of AI in daily lives. In 

1997 IBM’s Deep Blue, a chess-playing computer, was the 

first to beat world chess champion Garry Kasparov, and in 

2017, Google’s DeepMind programmed AlphaGo, a self-

learning Go player AI, which knocked out the world’s 

strongest Go player Lee Sedol [3, 4]. From smartphone 

assistance like Google assistant, Apple’s Siri, Amazon’s 

Alexa, image and video processing, music and video 

recommendation to self-driving cars like Tesla and Waymo 

(by Google) [5, 6]; per diem AI is providing enormous help 

and support. In fact, AI is the key factor of the fourth 

Industrial Revolution. AI provides a wide road to explore 

and hence is currently being in adoption to every discipline 

of study [7]. AI, along with its two-subfield machine 

learning (ML) and Deep Learning (DL), is now vastly used 

in pharmaceutical sectors for pharmacophore modeling, 

molecular designing, pharmacological data analysis, assay 

analysis, chemical synthesis, and drug trial monitoring [8-

11]. 

This paper sheds some light on the problems the 

pharmaceutical sector is facing in fast-track drug discovery 

and an adventurous journey of AI to alleviate those 

complications and discuss their forthcoming. The literature 

is currently more or less focused on applying AI in a 

particular phase of drug discovery; however, here, we aim 

to provide a cumulative update covering all the stages of 

drug designing and discovery. 

2. Drug discovery and AI 

In the past three decades, the drug discovery process has 

been evolved in many folds. Immense advancements in 

chemical engineering, biological science, and the active 

utility of computers lead to the foundation of modern drug 

discovery. From serendipitous drug discovery to Computer-

Aided Drug Discovery (CADD), medicinal chemistry has 

come a long way via peaks and valleys. Though the past 

years have seen many hardships to bring a new drug to 

market through many hurdles, it has been reckoned that in 

this decade, the use of AI will bring out the best of ever [12, 

13]. Figure 1 presents a brief timeline of advancement in 

the field of AI. 

2.1. Approaches in drug discovery 

The major shift in molecular drug discovery is dated back 

to the 1990s, where large numbers of molecular libraries 

were established through target-based High-throughput 

screening HTS using combinatorial chemistry [14]. 

Combinatorial chemistry is the synthesis of thousands of 

compounds in one single process [15]. The HTS is an 

automatic process where a bunch of compounds could be 

rapidly screened based on their receptor-molecule 

interaction [16]. The advancements in new disciplines of 

science such as computational drug design, biotechnology, 

molecular biology, and medicine; human genetics enhanced 

the knowledge of transgenic animal models, the discovery 

of new drug targets (proteins, enzymes, and receptors), 

biomarkers, and understanding of new and existing diseases 

and their mechanisms. The more the study of molecular 

library data, proteomics, and genomic data evolved, the 

sharper the understanding became. Combining all the 

available data sets, different hypothesizes had been 

proposed to ease the process of DD. With the ADMET 

properties: absorption, distribution, metabolism, excretion, 

and toxicity data, quantitative structure-activity relationship 

(QSAR) data, receptor-target interaction data, finally, the 

computer-aided drug discovery (CADD) came to exist by 

using computer simulations known as in silico drug design 

[17]. Figure 2 illustrates the different phases and 

techniques that generate the relevant data for drug 

discovery. 

The process of drug discovery can be broadly classified into 

four major stages: (i) target recognition, (ii) target 

development, (iii) pre-clinical studies, and (iv) clinical 

studies. Every stage contains many layers of experiments to 

bring the best fit. Each stage is interdependent to the other 

[18]. We will go through these stages with respect to the 

ML approach. 

Figure 1. A brief timeline of AI development 
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2.2. Need for the drug discovery 

Health is the primary asset to a prosperous civilization [20]. 

As fast as humans are adding revolutionary chapters to 

civilization, knowingly and unknowingly, some situations 

are compromised. This then leads to severe disasters, i.e., 

the recent SARS-2 COVID-19 pandemic. Not only 

COVID-19 but also the existing chronic diseases like 

cancer, diabetes, gastroesophageal reflux disease (GERD), 

various cardiovascular diseases, epilepsy, acquired immune 

deficiency syndrome caused by Human immunodeficiency 

virus (HIV-AIDS) infection, is nowadays taking serious 

turns in every group of the population worldwide [21]. Rare 

diseases like thalassemia, hemophilia and primary immune 

deficiency diseases in children are also serious issues. To 

also address tropical diseases like leishmaniasis, leprosy, 

lymphatic filariasis, dengue, guinea, etc. [20, 22]. Though 

we have successfully controlled some deadly diseases of 

past decades, some new threats and diseases are still coming 

on the way; and we should be prepared. Drug discovery that 

includes either novel drug synthesis or drug repurposing 

remains the two means of our defense against such potential 

diseases (figure 3). 

2.3. Problems with conventional approaches of drug 

discovery 

The huge advancements in technology and managerial 

approaches in the research and development R&D sector 

exceptionally uplifted modern drug discovery operations 

with new diversifying perspectives. Albeit, the drug to 

market ratio is very drastic, falling around 80-fold (in terms 

of inflammation-adjustment) in comparison to the 1970s 

Figure 3. The need for new drugs; they can be new drugs by rational drug development or repurposed drugs. 

 

Figure 2. Phases of drug discovery using data from different sources [19]. 
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drug approval rate due to its complexity, longevity, and 

expensive nature [23]. The process of drug discovery goes 

through many experiments and researches done by a variety 

of professionals. Every year, pharmaceutical companies 

invest money to develop new drugs for diverse diseases; 

fortunately, one might get a chance to the market out of 

hundred projects. It takes approximately 12 years with a 

payout of US$3 billion and lots of manpower to bring out a 

new drug candidate. The fate of those unsucceeded projects 

is termed as “R&D inefficiency of the pharmaceutical 

sector” [24]. This R&D inefficiency of pharmaceutical 

companies also depends on many factors, i.e., geographical 

location, the criticality of diseases, market regulation 

policies, availability of active pharmaceutical Ingredients 

APIs, etc. According to Scannell et al.., the R&D 

inefficiency is because of the four factors: (i) the ‘better 

than Beatles’ problem refers to the resistance by endorsed 

drug molecules to the upcoming new drugs by setting 

approval, adoption, and reimbursement barriers; (ii) the 

‘cautious regulator’ problem refers to the constant 

upgradations to the drug safety regulations by respective 

authorities; (iii) the ‘throw money at it’ tendency is the 

investment of companies in other sectors by downsizing 

R&D sector to top the market competition; (iv) ‘basic-

research-brute-force’ bias points out the proneness to 

overestimate the ability of advances in basic drug discovery 

approaches [25]. Due to these inefficiencies’ consumer 

faces hefty pricing of medicines. They pay both for the 

succeeding drugs as well as for those failure projects. With 

this, even some tropical diseases on their primary level were 

left underrated and unaware, which gradually became 

notorious to a group of people [24, 26]. 

Insufficiency in advanced biomolecular tools such as 

chemical probes and antibodies is also an important setback 

in molecular drug discovery. In-depth biological 

understanding is limited to less numbers of proteins. One in 

three proteins remains understudied; their function in 

human biology and role in disease studies remains an 

enigma. To date there’s only 11% of human proteome has 

been explicated; this is recognized as a causality dilemma, 

which keeps a major portion of proteomic and genomic 

studies in shadows. Ultimately, this causality dilemma 

slows down the progress of modern drug discovery [27].  

Like a tree, science is growing, and with each passing 

decade, new disciplines have been emerging from it like 

branches. Knowledge and experience within a particular 

field are also increasing swiftly; in fact, thousands of new 

articles have been added to each branch of science every 

year. Every year, the MEDLINE data (repositories of 

medical knowledge) increases around eight hundred 

thousand plus. The ZINC library data (free database of 

compounds for VS) has also seen a peak of thousand-folds 

between 2005-2019 from 700,000 entries to 1.3 billion 

entries. Accordingly, the pharmacological data, protein data 

bank PDB entries, in vitro HTS data, molecular drug design 

data, experimental chemistry data, and toxicology data are 

also increasing. Each stage of drug R&D involves data 

mining and analysis to create a hypothesis and 

experimentally testing them. This data, as a whole, is 

getting very complicated. In a rapid manner, the human 

brain individually or in a team is less capable to create and 

process such amount of multivariable complex hypothesis 

at million data points flawlessly. It is also exhaustive and 

time-consuming for humans to monitor every stage of DD. 

There also exists an experience gap between experts of 

different subfields; that affects DD in many ways [28]. 

Figure 4 illustrates the contribution of different scientific 

disciplines in supplying the necessary data for the molecular 

drug designing processes. 

Figure 4. Data mining for drug discovery from different fields of science. 
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From target identification to clinical trials and approval, 

these are the current setbacks in pharmaceutical sectors 

retarding the progress of new medicines. However, the 

approach of expert-driven study backed up by a data-driven 

study in R&D methods has reassured breakthroughs. The 

adoption of AI in the drug discovery process has given a ray 

of hope. The evolution of computational tools has proved to 

be an efficient, cost-effective alternative to conventional 

drug discovery approaches (table 1) [29]. Gisbert et al. 

demonstrated the humongous application of ML 

approaches in chemocentric and molecular informatics 

studies in three steps: (i) selection of problem-specific 

descriptor sets to find out the essential properties of 

involved molecules; (ii) molecular property driven scoring 

or metric schemes to compare the encoded molecules; (iii) 

implementation of suitable ML algorithms to identify 

exceptional features for qualitative and quantitative 

separation of active compounds. The use of AI enhances 

speed and ease of scalability in modern drug discovery 

approaches [30]. 

3. AI in rational drug discovery: a paradigm shift 

A notable AI researcher, Antonio et al.., has penned down 

the AI into two parts: weak AI and strong AI. Weak AI is 

the artificial narrow intelligence (ANI) machine, and strong 

AI refers to artificial general networks AGI. Weak AIs have 

been designed to perform some specific operations, i.e., 

smartphone assistants, smart home assistants, etc., have 

gained mass acceptance in everyday life.  Whereas the 

strong AIs are meant to play crucial roles in bigger aspects 

of human civilization, i.e., fully automatic robots to perform 

surgery, fight in the war, and other complex studies. The 

popularity of AI’s is because of their work efficiency and 

self-learning ability in any environment; ease of life is just 

one click away. Even some software companies have 

started making AI operating system applications to 

accompany lonely and stressed people; who listen to them, 

talk to them, and perform tasks for them by gradually 

learning about their choices and lifestyle. In drug discovery, 

both weak and strong AIs will assist chemical and 

biological scientists in each stage of molecular drug 

discovery. The field of strong AI or AGI is under the show 

yet; albeit, pharmaceutical companies are largely acquiring 

ANIs to truncate expense, waste, labor, and failure rate [31]. 

The application of AI in molecular drug discovery studies 

dated back to the 1960s. For the physicochemical property 

studies, i.e., early QSAR and drug-likeness property studies 

of active molecules, Hansch et al. used computers in 1964. 

Then, various pattern recognition methods have been used 

to study the specificity of active molecules. Around the 

1980s, the implementation of artificial neural networks 

(ANN) in computational studies helped elevate regression 

tasks. Perceptron, Neocognitron, were prototypes of ANN 

used in those early DD studies.  For the first time in 1989, 

Qian and Sejnowski et al. published the application of 

neural networks in protein secondary structure prediction. 

Around the 1990s, fully automated molecular designing 

models had been introduced for integrated learning and 

decision-making purposes. Using a little advanced ANN, 

i.e., the backpropagation neural network (BPNN) and 

mainstream potential ML algorithms, i.e., the support 

vector machine (SVM) and random forest (RF), those 

models were made capable of self-learning from 

experience, problem-solving, and habitant to new 

situations. In 2014, the deep neural network (DNN) studies 

boomed with creating the Generative Adversarial Network 

(GAN) architecture. GAN helped scientists to build 

molecular architecture with unprecedented generative 

capabilities [32]. A 2016 model, Cornucopia - molecular 

fingerprint interpreter, was widely used by chemists to 

study structure and reaction mechanisms. Variational auto-

encoder (VAE) for converting molecular structures to 

computer understood language translator simplified 

molecular-input line system SMILES strings has become 

crucial for molecular design and synthesis studies [27]. The 

cascaded approach before the modern deep learning 

approach by combining a number of different types of ML 

algorithms [33]. The advancement of AI has reduced a 

small amount of gap between conventional DD and rational 

DD approaches [34]. In 2017, the pharmaceutical industry 

started the partnership with software companies or AI 

manufacturers. A 2018 McKinsey report predicted a 39% 

revenue increment in pharmaceutical sectors by AI 

approach over traditional approaches [35].  

4. Progress of AI in rational drug discovery 

4.1. Use of AI in ligand-receptor binding affinity 

prediction 

The primary step in drug discovery is finding out the 

receptor related to a disease and understanding its role in 

that particular disease mechanism. Based on the receptor’s 

molecular nature, several chemical compounds with drug-

Table 1. Comparison between conventional  approach of DD and AI-driven DD. 
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likeness are proposed, and the one with the highest receptor-

ligand binding score is assumed to be the hit. Search 

algorithms and scoring functions SFs are two important 

features for docking study. The SFs are mathematical 

functions used to predict receptor-ligand binding affinity, 

measured as the Pearson correlation coefficient (Rp). 

There have been different ML and DL-based AIs are 

proposed to predict the binding score. Two SVM-based 

models are SVR-Score and ID-Score. Ballester and 

Mitchell et al. had developed a number of RF-based AIs, 

i.e., RF-IChem, SFCscore
RF, X-Score, and B2B Score, to 

study the receptor-ligand binding affinity. Among these, 

RF-Score had performed better, encoded into large-scale 

protein-ligand docking website DockThor 

(https://www.dockthor.lncc.br/v2/). Again, Ballester et al. 

confirmed the better performance of RF-Score-v3 in 

comparison to X-Score with respect to 16 classical scoring 

function sets. RF uses decision trees DTs as base learners. 

This helps to incorporate the algorithm with much variance 

and flexibility; this high variance reduces the correlation 

between trees. Hence, it improves the accuracy of the score 

prediction in the whole ensemble model. For rescoring 

purposes, NNScore and CScore ANN-based machines have 

been developed.  

In structure-based drug designing, the tools used for 

molecular docking operate on diverse sampling algorithms, 

docking, and simulation methods. These tools also use 

various scoring parameters and functions to predict the 

most accurate binding score. The methods and functions 

depend on the three-dimensional structural features of the 

ligand, which is evaluated by implementing rotational and 

translational vectors [36]. The only problem with the above-

mentioned ANN, RF, or SVM-based ML machines is their 

need to represent molecules with fixed-length vectors. The 

development of convolutional neural networks CNNs in DL 

minimized the limitation, as it is capable of extracting the 

features directly from the 2-D and 3-D molecular structures. 

Cang and Wei et al. developed a multichannel topological 

neural network TopologyNet using a topological strategy 

and a CNN model developed by Ragoza et al. While the 

CNN is used to make a 3D grid for each protein-ligand 

complex, the topological strategy is used to represent the 

3D biomolecular geometry of 1D topological invariants into 

a reduced-dimensionality formulation. This arrangement 

occurs without altering the important biological properties 

of the molecule, and across every grid point, the atom 

densities are stored. 

In 2020, Artem et al. had introduced Deep Ducking, a novel 

DL platform for structure-based drug discovery. The Deep 

Ducking model combined with the FRED docking program 

was used to dock 1.36 billion molecules from the ZINC15 

library against 12 target proteins; the results were pretty 

striking. It yielded approximately 6000-fold enrichment of 

high scoring molecules and a reduction of 100-fold data 

without any loss of favorably docked entities. The Deep 

Ducking approach utilizes Keras Python library to build and 

train the feed-forward DNN model on the basis of QSAR 

properties and docking scores of subsets of a chemical 

library [37].  The Deep QSAR model works in an iterative 

manner to approximate the docking outcome for both 

processed and unprocessed entries for a large number of 

molecules and removes the unfavorable molecules in a 

rapid and accurate manner [38]. 

Albeit the advancements in different ML and DL-based Ais 

in receptor-ligand affinity prediction have outperformed the 

classical method; still, it’s a challenging topic in rational 

drug discovery. Due to some partiality or bias in the scores 

in every respect, it is hard to depend on one step action and 

one model (table 2 compares parametric differences 

between various known classical scoring functions). 

Table 2. Comparison between different scoring functions (SFs) [34, 39] 

 

https://www.dockthor.lncc.br/v2/


40  AI in drug discovery 
 

Citation: Sahoo A, Dar GM (2021). A comprehensive review on the application of artificial intelligence in drug discovery. 
T Appl. Biol. Chem. J; 2(2):34-48. https://doi.org/10.52679/tabcj.2021.0007 

The modern docking operations with all the available 

computational tools can hardly exceed 0.1 billion 

molecules, leaving a large chemical space inaccessible. To 

address this incongruity, major steps are: (i) to lower the 

probability of false ligand pose prediction by using 

innovative conformational sampling; (ii) to separate the 

chemical compounds as per their drug-likeness (their ability 

to be hit/lead/fragment for different diseases) by using 

precomputed physicochemical parameters and drug-like 

criteria; (iii) to make those innovative methods user friendly 

and the separated compound library to be publicly accessed 

[37, 40]. 

Prediction of the binding score is the crucial step, and its 

consequences lead to other studies; hence, it should be 

carried out with utmost attention. The focus is to build a 

model which can predict accurate binding score with 

respect to molecular features and stability, despite the 

inactiveness of the receptor. Among the above-discussed 

approaches in scoring prediction, DL algorithms have the 

potential to work in every range of work environment, 

which will be a great advantage in the rational drug 

discovery process. ML technique with Gaussian process 

along with quantum effects and biophysics will also be 

useful in this regard. Success in protein-ligand docking will 

raise the curtain from the understudied protein-protein 

interaction phenomena [41]. 

4.2. Use of AI in de novo small molecular drug design 

Drug design refers to the molecular arrangements and 

rearrangements to the obtained hit/lead/fragments. This 

design is done in a precise manner with respect to the 

availability of chemicals, with the accurate set of desired 

interacting groups, for the proposed biological functions, 

and with an eye to the intellectual property rights IPR and 

standard safety parameters. The early drug design 

approaches were structure-based. Most of those drugs were 

prone to synthetic infeasibility, poor drug metabolism, and 

less minimized toxicity. The recent de novo drug design 

approaches are ligand-based. Another approach is called the 

‘inverse QSAR’ approach [41-44]. 

Before the use of ML/DL methods, the de novo drug design 

was completely knowledge-based. Using deep generative 

networks like convolutional neural network (CNN), 

recurrent neural networks (RNN), adversarial autoencoder 

(AAE), and variational autoencoder (VAE) are the most 

used full models in de novo drug design. These models can 

even perform better with no preliminary chemical 

knowledge [45, 46]. 

The universal scheme to use DL in de novo drug design is:  

(i) To build a model with deep generative 

networks of one type or a mixed type. 

(ii) To train the model with various sets of 

reference chemical compounds (from 

ChEMBL, DrugBank, ChEBI, GDB-17, or 

FDB-17) via SMILES strings. 

(iii) To make the model experienced through 

coherent training at different biological, 

chemical, pharmacological data points.  

(iv) To let the model apply the experienced 

knowledge to arrange the molecule as per the 

commanded desired properties.    

4.2.1. RNN-based 

The early studies on deep generative models gained an 

utmost advantage from the use of RNN to template sets and 

novel scaffolds [47, 48].  Segler et al. demonstrated the 

autodidactism of RNNs from the trained data to represent 

molecules as SMILES (figure 5); that learned the grammars 

to valid SMILES representation and generated chemical 

molecules of different scaffolds and similar properties [49]. 

Yuan et al. reported a new library generation method using 

character-level recurrent neural networks char-RNN, 

known as Machine-based Identification of Molecules Inside 

Characterized Space MIMICS. In MIMICS, the char-RNN 

was trained to learn the notable features in SMILES strings 

for the given set of chemicals; thus, it can eliminate 

molecules with unwanted properties. In 2018, Popova et al. 

used the stack-augmented recurrent neural network stack-

Figure 5. RNN based models in drug design. The RNN model learns the features of desired chemicals from 

SMILES strings and filters the active molecules from inactive compounds [50]. 
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RNN (extension of RNN architecture implemented with 

persistent memory unit) to generate a library of novel 

ligands against Janus protein kinase 2 JAK2 (a non-receptor 

tyrosine kinase) [50]. 

4.2.2. LSTM-based  

Long-short-term memory (LSTM) networks were being in 

use for the novel drug design purpose. Hochreiter and 

Schmidhuber introduced the LSTM architecture to address 

the vanishing and exploding gradient problems of DNN 

[51]. The hidden units in the LSTM network are able to 

choose to be either linear or non-linear through a 

multiplicative gating mechanism. The linear units help the 

network potentially count and store a finite amount of 

information for a long period of time.  Hence, LSTM is 

capable of learning context-free and context-sensitive 

grammars [52, 53]. In a 2019 article, Awal et al. 

demonstrated the use of LSTM generative neural networks 

to generate new drug analogs of the reference molecules of 

the FDB-17 database. For the training of that model, a 

transfer learning algorithm was used. For hit-lead 

optimization, Gupta et al. combined the LSTM network 

with RNN and trained the model on ChEMBL with a 

transfer learning algorithm to learn SMILES grammar. The 

model performed better optimization of hit-to-lead even 

with less data [47]. 

4.2.3. AAE and VAE based 

Kadurin et al. used a seven-layer AAE architecture to 

generate molecular fingerprints in cancer drug discovery 

with definite restrictions. This AAE model was able to 

identify new molecular fingerprints as per the preset anti-

cancer cell properties. This experiment was introductory to 

AAE architecture in de novo drug design. With the success 

of the experiment, the researcher group developed a drug 

generative adversarial network (druGAN) using AAE 

architecture. In the field of anti-cancer drug discovery, 

druGAN will be helpful to propose new molecules in a 

narrow search space [54].   

4.2.4. GAN-based  

The advanced deep generative adversarial networks 

(GANs) have the ability to generate drug-like molecules 

with desired properties using input SMILES strings [55]. 

Sanchez-Lengeling et al. combined GANs with 

reinforcement learning and proposed an objective-

reinforced generative adversarial network for inverse-

design chemistry (ORGANIC) architecture. ORGANIC is 

the first DNN to use GAN. The model has a Discriminator 

component D powered by discriminative networks to 

collect the initial distribution data of molecules; a 

reinforcement component R  to provide a quality metric to 

quantify the desirability of given molecules  (if the quality 

matric is R(x) ∈ [0, 1] for a given molecule x, 1 is meant to 

represent the desired shift in properties and 0 an undesired 

change); and a Generator component G to generate the 

molecules on the basis of the maximum objective function 

(a linear combination of the D and R parametrized by a 

tunable parameter λ). While the GAN generates non-

repetitive, sensible molecules similar to the initial 

distribution of data, the RL biases this generation towards 

the maximization of the reward. Though ORGANIC is used 

to design organic photovoltaics, OLEDs, and flow batteries, 

it has an adversarial setting problem, i.e., mode-collapse 

during training [56]. 

To address this common adversarial setting problem, a 

research group led by Evgeny Putin, Aspuru-Gudzik, and 

Zhavoronkov used the GAN paradigm and RL to build an 

original DNN architecture for de novo small-molecule 

design. They named the architecture Reinforced 

Adversarial Neural Computer (RANC). RANC uses a 

differentiable neural computer (DNC) as a generator; that 

increases generation capabilities by the addition of an 

explicit memory bank. RANC trained on the SMILES string 

generates molecular structures as per (i) matching the 

distributions of the key chemical descriptors, e.g., MW, 

logP, etc., and (ii) lengths of the SMILES strings used in 

training. RANC outperformed ORGANIC with reference to 

several drug discovery matrics, i.e., the number of unique 

structures, Muegge criteria, medicinal chemistry filters 

(MCFs), and high QED scores. RANC promises to save 

time and labor on de novo drug design [57]. 

4.2.5. Limitation of SMILES and rise of molecular graph 

approach 

SMILES is a great tool to translate molecular structures for 

computer appreciation and investigation.  Despite their 

wide application in computational chemistry, their use is 

always not that much revealing. The main complications 

with the use of SMILES often observed are (i) generation 

of non-reasonable molecules; and (ii) conjuring of single-

character-based molecules [34]. The use of a molecular 

graph, i.e., graph memory network GraphMem in the 

development of generative molecules, is an alternative 

approach for de novo molecule design. To represent and 

generate molecules by portraying them with a molecular 

graph is a robust technique; even if some molecular graphs 

are partially generated, they can be considered subsets of 

molecules and can be used in chemical checks. Molecular 

graph generators are trained by VAE or GAN architecture. 

Currently developed GAN-based molecular graph-

generators are MolGAN [58] and Mol-CycleGAN used to 

generate optimized molecules with much likeness to 

original compounds [59]. DeepGraphMolGen, a 2020 

model, uses graph convolution network GCN and 

reinforcement learning approach to generate molecules 

based on drug-like properties and synthetic availability 

[60]. 

4.3. Use of AI to predict pharmacological and 

physicochemical feature of molecules 

In the early drug discovery process, without designing all 

the molecules and actually observing their interaction in 

vivo or in vitro assay, observing them in silico models has 

saved time and expenditure in many folds. Big Data, ML, 

DL, and quantum chemistry approaches are now 

successively used in the prediction of physicochemical 

properties, i.e., lipophilicity (log P, log D), aqueous 
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solubility (log S), intrinsic permeability prediction, 

ionization constant, melting point, boiling point, 

Pharmacological properties like absorption, distribution, 

metabolism, excretion and toxicity ADMET (figure 6) [61-

63]. 

To predict octanol-water partition log P, ALOGPS is a 

model that uses associative neural networks, the 

combination of feed-forward network and k-nearest 

neighbor (kNN). Undirected graph recursive neural 

networks (UG-RNNs) and graph-based CNN are used to 

predict aqueous solubility [64]. RS-predictor (using 

hierarchical descriptor and quantum chemical, atom-based 

descriptor), SMARTCyp and Xenosite (combining ANN 

with topological, quantum chemical, and SMARTCyp 

descriptor), CypRules, MetaSite, Metapred, WhichCyp are 

available tools to predict sites of metabolism [65]. Many 

ML methods are used for toxicity study, i.e., SVM, 

relevance vector machine (RVM), regularized-RF, RVM 

boosting (RVMBoost), SVM boosting (SVMBoost), 

AdaBoost, and C5.0 trees. DL-AOT, pkCSM (uses graph-

based structural signatures), admetSAR, LimTox, and 

Toxtree web tools and packages are available for toxicity 

studies in de novo drug design [34]. 

4.4. Use of AI in de novo chemical synthesis 

The synthesis of a new drug is always knowledge-driven. 

Computer-assisted synthesis planning CASP has 

transformed rational drug discovery without needing the 

medicinal chemists to synthesize all the selected molecules 

by searching tones of organic reaction pathways [66]. A 

new drug should follow Lipinski’s rule of five: (i) 

molecular weight should be less than 500 Da; (ii) there must 

be less than five H-bond donor atoms and (iii) H-bond 

acceptors less than ten; (iv) octanol-water partition 

coefficient logP should be less than five [67, 68]. Other 

aspects that should be considered before the beginning of 

the synthesis are the yield of the reaction with atom 

economy AE, process mass intensity PMI and costs of 

materials to be used [69]. Moreover, the reaction reagents, 

catalysts, products, and byproducts should follow green 

synthesis norms and other safety parameters [70].  

In the AI-driven chemical synthesis process, computer 

algorithms are trained on (i) starting material selection, (ii) 

reaction prediction, (iii) reaction condition prediction, (iv) 

synthetic route planning, and (V) retrosynthetic pathways 

[71, 72]. The data for machine training is evaluated from 

various databases, i.e., Chemical Abstract Service CAS 

with 127 million reactions (largest provider), Reaxys, 

SPERSI, Pistachio, and United States Patent Office 

USPTO. SOPHIA, LHASA, CAMEO, SYNCHEM, EROS, 

and RASA algorithms are used to design various ML tools 

[73-75]. 

4.5. Use of AI in pre-clinical and clinical trials 

The synthesized drug has to pass pre-clinical studies in 

animals to enter the full passage of clinical trials. In phase I 

of the clinical trial, investigators use a small quantity of 

drugs on twenty to eighty healthy human volunteers (with 

no medical conditions) for several months to study human 

pharmacology and evaluate ideal dosage. Phase II 

comprises hundreds of infected volunteers (humans with 

the disease that the new drug is meant to treat) with the same 

dose for several years to study the interaction and other 

therapeutic conditions. In phase III, thousands of randomly 

chosen infected volunteers (up to 3000) are observed for 

several years. Phase III is a double-blinded trial (both the 

observer and volunteers don’t know what medication they 

are using) to confirm the findings of the early phase. Here, 

in phase III, the new drug gets approved; however, its safety 

and other therapeutic uses are still observed in phase IV 

[76].   

In clinical trial failure rate of proposed drugs is very high 

due to (i) inefficient volunteer selection; and (ii) inability to 

effectively monitor the observation [27]. ML and DL 

approaches have been proposed to prepare the study, 

regulate required parameters, and constantly monitor trial 

success rates to address these casualties in a clinical trial. 

Various AI tools are used to predict human-relevant 

biomarkers of diseases to recruit a specific patient 

population in Phase II/III trials [77, 78]. The machine is 

Figure 6. Physicochemical and pharmacological feature prediction by ML approach. The structures designed 

molecular library is converted to .sdf or .sml format and then imported to the machine. The machine is trained 

on different data points from various sources, i.e., DrugBank, Votano, PAMPA, etc. The AI processes the data 

using encoded ANN and exports the ADMET and physiological properties as graphs and charts for comparison 

purposes [61]. 
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designed in such a manner that it notes down every change 

in the patient’s medical condition electronically. IBM 

Watson uses a DL-based clinical trial matching system to 

maintain and analyze structured and unstructured electronic 

medical records of patients to create and select suitable 

patient profiles [79]. PrOCTOR predicts toxicity 

probability. AiCure is a mobile application used to monitor 

phase II clinical trial data of schizophrenia patients; it 

showed 25% improvement in monitoring data compared to 

traditional ‘modified directly observed therapy’ [24]. 

4.6. Use of AI in drug repurposing 

Repurposing approved drugs and under development drugs 

(failed projects) is a new smart and logical approach in the 

rational drug discovery process; to defend obscure 

therapeutic prerequisites of unexpected, rare, and ignored 

diseases. Repurposing of drugs works because (i) different 

diseases share molecular pathways and genetic factors, and 

(ii) drugs have multiple targets. Repurposing needs a lot of 

data from various perspectives [80, 81]. To feed this, 

Table 3. Partnership between pharmaceutical industry and AI industry [24, 35, 93-95]. 
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computational techniques are the best suit [82]. The 

important algorithms used for drug repurposing studies are 

supervised learning, unsupervised learning, and semi-

supervised learning. Supervised model, i.e., DTINet; 

unsupervised models, i.e., MANTRA, semi-supervised 

model, i.e., LapRLS and advanced NetLapRLS, LPMIHN, 

BLM with neighbor-based interaction-profile inferring 

(BLM-NII), and network consistency-based prediction 

(NetCBP) method, network-based deepDR are in use for 

drug repurposing [83-87]. Though these models have 

promised better performance, still there predictions are not 

conceived yet [82]. 

5. Future of AI in drug discovery 

AI paradigm has advanced the drug discovery process with 

new insights as a whole. It has eased the knowledge-based 

research criteria for chemists, biologists, and scientists. It is 

boosting the pharmaceutical sectors and their experiments 

to a new level [88, 89]. The time of the hit and trial approach 

in drug discovery has shifted to rational drug discovery and 

development. However, AI has two potential drawbacks (i) 

data insufficiency and (ii) Black box prediction model. In 

the current scenario, AI in drug discovery is like the ‘blind 

watch maker’. Though it knows its purpose and mostly 

accurate, still it’s unexplainable; a ‘black box’ prediction. 

In science, rational and correct explanation is the main 

theme. Until the AI becomes explainable XAI, the 

researchers will guesstimate in shadows. In the near future, 

with much advancement, the XAI may explain the how. 

Rapid growth in database libraries has made the data messy 

as a whole. Also, the search engines are now becoming 

specific. These two facts are ultimately leading to the 

possibility of missing in randomness. In contradiction, the 

DNN machines need a large number of data to be trained 

upon. The deeper the network, the more data it demands for 

training and reinforce-learning. This problem can also be 

addressed by assistantship of AI, which can mine the data 

and feed the analysis itself [90, 91]. 

The partnership between pharmaceutical sectors with AI 

organizations is facilitating research (table 3). A number of 

startups are opening. However, some challenges are still 

present in the current scenario of rational drug discovery. 

Peter et al. have demonstrated five major challenges; (i) 

Data governance, (ii) Lack of a single unifying problem; 

(iii) insufficient skill sets; (iv) traditional scientific 

approach; and (v) absence of investment. These challenges 

are natural yet concerning. It is believed that with time and 

much-advanced machine learning approaches can address 

these challenges [92]. 

Automation by AI is a burning issue as it will lead to 

unemployment in a large number of populations [96]. In 

exports view, the AI that is being used artificial narrow 

intelligence ANI is not really up to replace humans but will 

enhance humans and their laziness [35]. With AI, a person 

can save a lot of time and can use turn that saves time to 

creativity. Especially in the rational drug discovery process, 

the robots or machines can compile the data by 

understanding the subject matter. They can filter those 

compiled data and present them to the scientist, where the 

scientists or researchers will have to think on bigger 

pictures of that study without worrying about the data and 

wasting time compiling them. The robots or machines will 

help the drug designer scientist design better, greener 

chemicals, and the synthesis process can be easier. At every 

point the machine can monitor and verify the process and 

data to minimize mistakes. 
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